INNOVATIVE CULTIVATION SOLUTIONS

Cultivation/Fermentation Technique

Chenopodium formosanum March 17, 2025

Chenopodium formosanum CULTURE TECHNIQUE

Peptide from tempeh-like fermented Chenopodium formosanum: Counters

senescence while enhancing antioxidant ability in non-replicative aging

Chen-Che Hsieh^a, Hui-Wen Lin^b^c, Hsiao-Chu Huang^d, Darin Khumsupan^e, Szu-Chuan Shen^f, Shin-Ping Lin^{gh}, Chang-Wei Hsieh^{jk}, Tsung-Yu Tsai^l, Sirima Suvarnakuta Jantama^m, Hsing-Chun Kuo^{nopq}, Kuan-Chen Cheng^{delrs}

Abstract

This study investigates the effects of glycine-rich peptides (GRP) derived from tempeh-like fermented *Chenopodium formosanum* on cellular senescence and antioxidant capacity in non-replicative aging models. The results demonstrate that GRP effectively mitigates senescence markers and enhances antioxidant enzyme activities, suggesting its potential as a functional ingredient for promoting healthy aging.

Winpact Model: FS-V-SA05P

Introduction

Aging is associated with increased oxidative stress and cellular senescence, leading to various age-related diseases. Natural compounds with antioxidant properties are of interest for their potential to counteract these effects. *Chenopodium formosanum*, commonly known as Djulis, is a traditional grain rich in bioactive compounds. Fermentation processes, such as tempeh-like fermentation, can enhance the bioavailability of these compounds. This study explores the impact of GRP derived from fermented *Chenopodium formosanum* on oxidative stress and cellular senescence.

Materials and Methods

Fermentation Process:

Chenopodium formosanum grains were subjected to tempeh-like fermentation using [specific microorganisms], following optimized fermentation conditions to maximize GRP production. *Peptide Extraction and Characterization:*

Post-fermentation, peptides were extracted and analyzed using techniques such as High-Performance Liquid

weight distribution.

Cell Culture and Treatment:

[Specific cell lines] were cultured under standard conditions and treated with varying concentrations of GRP to assess their effects on markers of senescence and oxidative stress. *Assessment of Senescence and Antioxidant Activity*:Senescence-associated β -galactosidase (SA- β -gal) staining was performed to evaluate cellular senescence. Antioxidant enzyme activities, including superoxide dismutase (SOD) and catalase, were measured using standard assay kits.

Results

Treatment with GRP resulted in a significant reduction in SA- β -gal positive cells, indicating a decrease in cellular senescence. Additionally, there was a notable increase in the activities of antioxidant enzymes SOD and catalase in GRP-treated cells compared to controls. These findings suggest that GRP enhances the cellular antioxidant defense system and mitigates markers of senescence.

References

Peptide from tempeh-like fermented *Chenopodium formosanum* counters senescence while enhancing antioxidant ability in non-replicative aging

https://doi.org/10.1016/j.lwt.2025.117641

Taiwan Office

No. 156, Sec. 1, Guoji Rd., Taoyuan Dist., Taoyuan City 330041, Taiwan T/+886-3-3762878 F/+886-3-3761310

US Office

19959 Sea Gull Way Saratoga, CA 95070 U.S.A. T/ +1-408-366-9866 F/ +1-408-446-1107

Shanghai Office

Room 612, International business exhibition center, 9300 Hunan Road, Pudong, Shanghai, China National toll-free No.:400-823-9177 T/+88-21-50795277 F/+86-21-50795277 India Office

D.No.7-143, 2nd Floor, St.No.2,Nagendra Nagar, Habsiguda, Hyderabad-500007. India T/ +91-40-27001515 T/ +91-40-27001586

